Membrane current evoked by mitochondrial Na⁺-Ca²⁺ exchange in mouse heart Mohammed Moinul Islam, Ayako Takeuchi, Satoshi Matsuoka

Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan

Background

Mitochondrial Na⁺-Ca²⁺ exchanger (NCXm) is essential for maintaining mitochondrial Ca²⁺ homeostasis. We aimed to measure and characterize the NCXm-mediated membrane current using mitoplasts derived from mouse heart in order to clarify the electrogenicity of NCXm, which has been a controversial topic for a long time.

Methods

Mitochondria were isolated from mouse heart and were exposed to a hypotonic solution to form mitoplasts (Fig 1), which were then used for whole-mitoplast patch clamp experiments (Fig 2).

Results

Under conditions that K⁺ and Cl⁻ currents, and Ca²⁺ uniporter current were inhibited, extra-mitochondrial application of 12.5 - 50 mM Na⁺ or 50 mM Li⁺ induced inward currents with 1 μ M Ca²⁺ in the pipette (Fig 3a). The inward current was diminished without Ca²⁺ in the pipette, and was augmented with 10 μ M Ca²⁺ (Fig 3b). The Na⁺ and Li⁺-induced inward current were largely inhibited by 2 μ M CGP-37157, a mitochondrial Na⁺-Ca²⁺ exchange blocker.

Conclusion

We succeeded in measuring the NCXm currents for the first time. It was concluded that the NCXm is electrogenic.

Islam MM, Takeuchi A, Matsuoka S. J Physiol Sci. 2020;70(1):24.